
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

T9 Predictive Text Technology for Telephone

Keypads Using Regular Expressions
Alternative T9 prediction method to the conventional trie data structure usage

James Chandra 13519078

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: tweenlicious@gmail.com

Abstract—In an age of rapid technological development, and

the instantification of many different aspects of life,

retrospectives ought to be done to enhance general understanding

of the history of technological development, and even find new

ways to innovate current technologies by looking at ones deemed

obsolete. One of these examples are the obsolescence of T9

predictive text keyboards built for twelve-key telephone or

mobile phone mechanical keypads that were replaced by the

dawn of capacitive on-touchscreen keyboards at the early turn of

the twenty-first century. The T9 had predictive text capabilities

which allowed for users to spell words at a faster pace, utilizing

the trie data structure as a dictionary to store pre-determined

word predictions. This paper will explore alternative methods to

the trie usage, namely using regular expressions—which was not

deemed viable or feasible in the past due to the limited computing

power that mobile cell phones had at the time, and considering

how expensive regular expression operations can be, having the

potential to even exhibit exponential behavior given the

appropriate strings or circumstances—to generate word

predictions by a converse comparison method to the conventional

method.

Keywords—T9; trie; regular expression; word prediction

I. INTRODUCTION

The T9 (Text on 9 keys) is a word prediction input
technology—usually found on mobile phones with 3×4
numeric keypads and in other accessibility technologies—that
was originally developed by Tegic Communications (which
has since been acquired by Nuance Communications) and was
adopted in most mobile phones by almost all major phone
manufacturers at the time in the 1990s. The T9 allows users to
type in alphanumeric characters via multipress which is a text
entry system where a set of letters is attributed to a number on
a keypad, in which taps of the button would cycle through the
letters on a given button.

Though now obsolete, replaced with the newer and more
modern capacitive on-touchscreen keyboards with QWERTY
layouts, there are still a handful of individuals who are still a
devout user of the T9 and multipress for its simplistic design,
tactile feedback, and ease of use. One other aspect of this

keypad that cannot be overlooked in terms of its software
prowess and brilliant engineering—which is proven by how its
concept is still used, adapted, and improved upon even in
current mobile phones through touchscreen keyboard
softwares—is the predictive text algorithm that it has which is
a dictionary-based prediction that allows for fast-access
through the trie data structure. Not only does the predictive text
technology order the predictions based on similarity and
alphabetic order, but it also does this through familiarity of
certain words, and also features an ever-expanding dictionary,
where certain words that have been used over and over again
will eventually be added to the built-in trie data structure (user-
database, or UDB) on a mobile phone.

Fig. 1.1 T9 keyboard illustration

Other features of this technology also encompass things
such as automatic punctuation as well as clitics for appropriate
languages, as well as textonyms which are a combination or
order of words that are commonly used, hence increasing the
practicality and ‘intelligence’ of the predictive text algorithm.
Though novel and certainly interesting, these additional
features will not be further discussed in the contents of the
paper.

This paper will solely discuss upon the topic of the
barebones prediction algorithm, but through converse methods

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

using regular expressions to the conventional method (trie data
structure usage). The paper will also expand upon the
alternative method’s shortcomings as well as practicality,
further developments, and other possible use-cases in various
areas of science and technology in the future.

II. FUNDAMENTAL THEOREM

This section will mainly cover the definitions as well as

theoretical knowledge needed as a pre-requisite to fully grasp

what will be discussed in the following sections. Among other

topics, an exposition of the trie data structure as well how it

relates to the T9 predictive text algorithm is going to be

touched upon, as well as some of the basics and fundamentals

of how regular expressions work, along with some other minor

subjects that are still related to the main topic.

A. Text on 9 keys

As previously mentioned, the Text on 9 keys, or
abbreviated T9, is a predictive text technology found on mobile
phones that were used in virtually all mobile phones in the late
1990s.

The T9 stored predetermined words in a data structure that
allowed for fast lookup access/retrieval, which enhanced its
predictive capabilities, it allowed for word predictions to be
done from a combination of single keypresses where the input
value would then be matched with the words stored in the data
structure. The Text on 9 keys also had a considerably efficient
compression rate, at about 1 byte for every word, using an
algorithm that was optimized for that specific use case.

To further demonstrate how a T9 would predict certain
keypresses, the following word predictions will be shown for
specific keypresses.

B. Trie

A trie is a data structure that is based off the conventional
tree data structure of n-ary. The trie or more commonly known
as the prefix tree is usually reserved for uses that had the need
to store nodes with alphabetical values and most generally used

in auto-complete algorithms, data compression, string matching
as well as spell checking.

The trie stores sequences of known words inside a tree
where leafs of a parent node would mean that a word of those
nodes would connect and form one string of word. This is
better illustrated with the following image.

Fig. 2.1 Trie data structure visualised

The trie illustration shown above depicts a trie that has a
root node, in this case it is labeled as node ‘_’, and stems to the
‘s’ character which then stems again to the letters ‘h’, and ‘k’,
which then when assembled as complete strings can construct
the words ‘shore’ or ‘sky’ or anything in between ‘shore’ or
anything in between ‘sky’.

The data structure allows for better time complexity to
search for certain words because of how the tree stems into
different characters, which bounds certain branches off, if they
prove to be mismatched at an early stage, hence eliminating the
need of traversing said branch and its children/leafs.

C. String Matching

A string can be defined as a sequence of alphabetic,
numeric, symbollic, and glyphic characters. These strings can
be further subdivided into its constituent strings, which are
called substrings. Suffixes and prefixes exist in the scope of
strings, prefixes referring to the substring that ranges from the
beginning of a string to a defined cut off point, while suffixes
refer to the substring that ranges from a cut off point before the
last character, to the last character of the string.

String matching is the process of having an algorithm of
choice detect matches or mismatches in a string’s pattern when
compared to another string.

D. Regular Expression

Regular expressions, commonly abbreviated as regex, is a
sequence of characters with syntactual rules that define a
search pattern for a string to be matched with. For the
understanding of this paper, the readers should be well
acquainted with these following basic regular expression rules.

22737: acres, bards, barer, bares, baser, bases,
caper, capes, cards, cares, cases

46637: goner, goods, goofs, homer, homes,
honer, hones, hoods, hoofs, inner

2273: acre, bard, bare, base, cape, card, care,
case

729: paw, pay, Paz, raw, ray, saw, sax, say

76737: pores, poser, poses, roper, ropes, roses,
sorer, sores

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

III. METHODOLOGY

As the heading suggests, the methodology section will
cover the specific way an operation in the final imlementation
is going to work, by explaining step-by-step the process and
logic behind it. The following paragraphs will contain an
example of a specific case that will hopefully show the
methods

A. Conceptual Implementation

The mechanisms in which the T9-like word prediction
program will work is relatively straightforward, in the sense
that it only requires basic programming knowledge and a
preparatory brief of regular expressions to understand.

Essentially, the program will take in input of a numeric
string value between 2-9 (mirroring how actual T9 keypads are
designed) character by character, allowing for predicted words
to change in real time for every time the word is updated. The
compounded word comprised of individual characters will then
be iterated over and then be translated into a regular expression
through a predetermined key-value pair data structure of some
sort (note that this data structure will be very miniscule in size,
due to how little attribution needs to be done, a sum of eight
which is the number of numeric string characters between 2-9),
which will then create a regular expression version of the
original numeric string value input.

The program will then iterate through all the predetermined
words listed in the word dictionary one by one and determining
with regular expression evaluation whether there is a match, in
which if there is, that word is going to be appended to the
matched word list, which will then be printed out for the user to
view.

IV. RESULTS AND DISCUSSION

This passage of the paper will mainly discuss about the
conceptual implementation of the regular expression algorithm
(which will cover a brief overview of how the final
program/implementation is going to be produced as well as the
step-by-step procedure written in descriptive text), as well as
the algorithmic implementation of the actual final program that
will be discussed in more detail after a short snippet of the code
has been shown.

A. Algorithmic Implementation

The algorithmic implementation of the method will be done
in the programming language Python (version 3.8.9). As a
means of explaining the source code of the program in a
thorough manner, the program will be divided into its smaller
abstractions so that it will be easier to get a grasp of the overall
flow of the program.

Fig. 4.1 Required module imports

 The first pre-step of the program is to import the necessary
modules required to construct the algorithm later on, which
will differ depending on what programming language the
algorithm is built in. The python standard OS module is
imported for its clearscreen functionalities which will be
implemented in a lambda function later on, while the standard
RE module is imported for its regular expression operations
capabilities which will be used main bulk of the word
prediction function.

Fig. 4.2 Initialization of predetermined words and letter
attribution

 The initialization procedure of predetermined knowledge
consists of two parts, one being the word dictionary itself,
which is a list of string, easily expanded upon (if the
programmer decides to add an expanding dictionary feature)
and can also easily import a word list from an external comma-
separated or whitespace-separated value file as its built-in word
dictionary. The second part is the initialization of the Python
dict that contains numeric string value to letter attribution, for
regular expression translation later on in the process, this is
done by assigning key-value pairs, the keys being the numeric

\d Match a digital number or [0-9]

\w Match any letter of a-z or A-Z, 0-9, _

\s Match whitespace

[abc] Match any one of a, b, c

(abc) Match abc exactly once

(abc)+ Match abc one or more times

(abc)? Match abc zero or one time

(abc)* Match abc zero or more times

[^abc] Match not a, b, c

\^[abc] Match starting with a, b, c

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

string value while the values are regular expressions of the
possible letters attributed to that key.

Fig. 4.3 Additional clearscreen function

The clear function above is a lambda function, which does not
differ from a regular function, only in the fact that it only has
one expression in its body. The clear function calls a method
from the OS module to clear the screen, this function will be
used later to refresh the command line interface when a new
character is input.

Fig. 4.4 Input loop sequence

The input loop function covers the majority of the program
except for the supplementary exit features written in the main
code snippet which will be shown in the following paragraphs.
The input loop consists of referencing the global inputString
variable, which is initially an empty string, then setting the
initial boolean value of the enterFlag (the flag which will be set
to true once a user enters without putting in a character,
signaling that an inputString reset ought to be done) to be false.

The while loop runs while the program still has not met an
empty string-enter yet and will then continue the body which
comprises of a clearscreen (so that the screen refreshes every
time a new character is input) and print current inputString
sequence and will then move on to do the word prediction
using the predictWord function (will be explained in the
following passage below) and print the multi-press keypad
interface as visual aid.

It will then move on to do a check whether or not the input
character is an empty string or not, on the case that it is, the
enter flag is going to be set to true and the flow of the program
is going to exit out of the loop, and on the other case that it is
not, it will stay in the loop, adding the latest character input to
the inputString which will then be reprocessed.

Fig. 4.5 Word prediction algorithm

The predictWord function is the main highlight of the
entirety of the program, since it contains the part of the regular
expression string matching algorithm which has been discussed
before. The program will iterate through the characters of the
numeric string value, then will then translate it into a regular
expression through the dict which has previously been defined.
Then the program will go onto finding word matches in the
word dictionary/list by iterating through the whole list and
finding if the word matches with the aforementioned regular
expression. It will then print the results of the matches
separated with the vertical bar glyph (‘|’).

Fig. 4.6 Interface print function

The printInterface function is one of a relatively simpler
kind as it merely acts as visual aid and does not add any
functional benefits nor features to the program.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Fig. 4.7 Main program

The main program does a few things in procedural order,
first being, setting the initial value of the outerEnterFlag (that
will be used to determine whether the user would like to
terminate the program by immediately inputing an empty string
to a newly reset inputString) to false, and initializing the
inputString for use.

The while loop runs as long as the outerEnterFlag is still
false, which will only be set to true if the user would like to
terminate the program or exit out completely. The while-loop
body will consist of the reinitialization of the inputString to be
an empty string (to help in reseting the inputString after the
program has exited out of an inner input loop), then calling the
inputLoop function.

B. Algorithm Output

To simulate a case of the T9 keypad being typed in real
time, snippets of the code output at certain points will be
shown along with its discussion and explanation. The
following program tested can be constructed by simply
assembling all the aforeshown snippets of code sequentially
and running the test case showcased in the following passage.

Fig. 4.8 Starting output

The above output is shown right after the program is run,
every part of the interface print sequence is done, and only the
character input is left to do by the user. A user will then be able
to input any numeric string character of choice between 2-9
(with 2 being attributed to a, b, & c, and continues on for the
rest of the numeric string values).

Fig. 4.9 Output after an input of ‘4’

It can be seen that when the user inputs the character 4, the
program outputs the predicted word hello, hollow and hell, this
matches with the word dictionary defined in the snippets
explained previously. The numeric string value of four is
attributed to three different letters, namely g, h, and i. The
program will convert the numeric string value into the regular
expression [ghi] and will then search for any first letter
matches in the dictionary, in which hello, hollow, and hell
match (due to all of the words beginning with the letter ‘h’),
and as the dictionary does not contain any other words
beginning with the letter g or i, this shows that the list of
predicted word shown is sufficient and hence deemed correct.

Fig. 4.10 Output after input of ‘43’

Using the same line of logic in the previous paragraph, it
can be seen that the word ‘hollow’ have been
eliminated/shaved off from the predicted words list, this is due
to the fact that the user has inputed the numeric string value of
‘3’ which means that the only possible combination of words
when written in regular expression is [ghi][def], and this proves
to be still true for the word ‘hello’ and ‘hell’ which both start
with the characters ‘he’.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Fig. 4.11 Output after input of ‘43556’

The last output snippet of the program showcases another
similar case, where one of the previously predicted words is
shaved off, due to the input string having one more character
than the previously predicted word character length. The word
‘hello’ is still predicted though, due to the fact that the numeric
string value of ‘6’ is attributed to the regular expression of
[mno] which matches the letter ‘o’.

V. CONCLUSION

To conclude the findings of this paper, the use of regular
expressions to do the string matching of a barebones version of
a T9-like word prediction algorithm is indeed very feasible and
viable to do especially at this point in time, given enough
computing-power resource, and storage, and/or execution time.

The alternative method of string comparison shown in the
contents of the paper (comparing all the words contained in the
predetermined dictionary/list of words against a numeric string
input value which is then converted to a small list of
predetermined regular expressions—which comes from a
numeric value’s possible equivalence with the alphabetic
characters it is attributed to on a multi-press phone
keypad/keyboard), which directly opposes how the
conventional T9 string comparison method works (comparing
the numeric string input value against the pre-constructed trie
data structure which contains all the predetermined words of
the dictionary), can be said as a novel approach, though the
definition of ‘novel’ that it stands by is one that is best
described by the word ‘unusual’ instead of ‘groundbreaking’.
This is due to the sheer inefficiency of the alternative method
which essentially runs through a whole dictionary of words to
retrieve word predictions, instead of traversing a pre-
constructed tree, where branches of words that already have
been mismatched will no longer be visited further (heavier
emphasis on preprocessing, but by far more efficient and user-
friendly).

That being said, much more can be done towards the
implementation to better the quality of the final resulting
program. Optimisations can be done towards the alternative
string-matching method, namely using data structures like
Python’s dicts or Javascript’s literal object notation, to simulate

a branching tree, although this optimisation would prove to
defeat the whole purpose of using regular expressions if the
ending data structure resembled too much of a tree as well.
From a feature addition perspective, other supporting hallmarks
of the original predictive text technology can be added such as
the user-database expanding dictionary, which can be easily
added to the current algorithm by simply adding every inserted
word to the list of predetermined words. Among other features,
the addition of a word familiarity-based sort would also be
fairly simple and straightforward as a naïve approach would
only require for the word dictionary to store a tuple of a word
and a default-familiarity level of 0, which will then increase by
one every time a word is typed.

The author hopes that the contents of this paper incited
sparks of inspiration and the joy of exploration of various
computer science topics in the respected readers and would like
to end the paper off in an open-ended note as to inspire
exploration of more interesting uses of predictive text
algorithms that were shown.

VIDEO LINK AT YOUTUBE

The following URL is a link to a youtube video explaining
the topic, methodologies, results as well as discussions of this
paper, in a much less formal and scientific manner, as to
promote public attention and awareness on the novel subject of
this paper.

ACKNOWLEDGMENT

First and foremost, the author would like to express
gratitude towards God for the opportunity to write this
particular paper. The author would also like to thank all
lecturers, professors, and aides of the “IF2211 Strategi
Algoritma” course at Institut Teknologi Bandung that have
been involved in the pedagogical process of instilling the
discipline of various important computer science algorithms to
the author. The author would also like to specifically thank Dr.
Nur Ulfa Maulidevi, S.T., M.Sc. who is assigned to be the
author’s lecturer in the Algorithm Strategies course of code
IF2211, as well Dr. Ir. Rinaldi Munir, M.T. whose learning
resources have been heavily used and contributed a very large
amount towards the process of formulating and writing this
paper. Among others, the author would also like to thank a
handful of individuals from his group of colleagues who have
helped him in proofreading parts of his paper. The author
realizes that there are still many unrefined and imperfect parts
of the paper and would like to apologize for any uncalled
mistakes present in the literature.

REFERENCES

https://youtu.be/Ov_VOWs7Pms

https://youtu.be/Ov_VOWs7Pms

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

[1] Munir, R. (2005). Strategi algoritmik. Sekolah Teknik Informatika dan
Elektro, Institut Teknologi Bandung, Tech. Report.

[2] Munir, R. (2007). Diktat Kuliah IF2251 Strategi Algoritmik. Institut
Teknologi Bandung.

[3] Thompson, K. (1968). Programming techniques: Regular expression
search algorithm. Communications of the ACM, 11(6), 419-422.

[4] Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., & Di
Pietro, A. (2008). An improved DFA for fast regular expression
matching. ACM SIGCOMM Computer Communication Review, 38(5),
29-40.

[5] Dunlop, M. D., & Taylor, F. (2009, April). Tactile feedback for
predictive text entry. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 2257-2260).

[6] Willard, D. E. (1984). New trie data structures which support very fast
search operations. Journal of Computer and System Sciences, 28(3),
379-394.

[7] Wiegand, K., & Patel, R. (2012, June). Non-syntactic word prediction
for AAC. In Proceedings of the Third Workshop on Speech and
Language Processing for Assistive Technologies (pp. 28-36).

[8] James, C. L., & Reischel, K. M. (2001, March). Text input for mobile
devices: comparing model prediction to actual performance.
In Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 365-371).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 09 Mei 2021

James Chandra - 13519078

